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Shock collision at a molecular level 

By A. K. MACPHERSONT 
Institute for Aerospace Studies, University of Toronto, Toronto 5, Canada 

(Received 11 April 1969) 

The development of reflected waves are studied when two shocks of unequal 
strength collide and when a shock collides with a constant temperature wall. 
Both these problems are examined using the Monte Carlo technique developed 
by Bird (1967). Some limitations upon this technique are suggested and a modified 
time advance parameter used. 

Introduction 
The feasibility of studying gasdynamic problems from the particle viewpoint 

has been greatly increased by the advent of large high-speed computers. In  
fact it may not be unfair to state that the bulk of significant advances in this 
field over the last twenty years have been dependent upon the availability of 
computing devices. This has been largely due to the intractability of the Boltz- 
mann equation. The analytically simpler BGK model has enabled the solution of 
many problems, but it requires the use of computers to obtain numerical solutions. 
The programming of the solution to steady plane shock wave problems, using 
the BGK model, appears to be a substantial task requiring a good knowledge of 
numerical techniques (Anderson 1966). The analysis of unsteady problems is 
naturally more complex and in one solution (Chu 1965) further approximations 
were necessary to obtain numerical results. 

As resort must eventually be made to computer solutions, the use of Monte 
Carlo techniques, whereby the individual particle motions are simulated on the 
computer, appear very attractive. The programming time is much less than for 
the analytic techniques referred to above, as only simple mechanics are required. 
The approximations appear to be certainly no more severe than those necessary 
in analytic studies and in some cases less so. The greatest defect in Monte Carlo 
solutions is the computer time required. However, it is possible that the increase 
in computing costs can be offset by reduced programming costs. Two such Monte 
Carlo techniques are known to the author Bird (1965, p. 216, 1966, 1967, 1969), 
Vogenitz et al. (1968) and Denisik et al. (1967). In the present study a brief ex- 
amination of both these techniques is made. As more information is available 
upon the method by Bird, a detailed examination of this technique is under- 
taken. The method of solution is a branch of ‘experimental mathematics’ and 
as in all experimental work many details must be evolved by the individual 
experimentalist. As all previous work has been set up either by Dr Bird or under 

-f Present address : Department of Mechanical Engineering, University of Manitoba, 
Winnipeg 19, Canada. 
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his guidance, it appears useful to present the results of a study which was under- 
taken only using the published papers. 

The main problem considered is the collision of two planar shock waves of 
unequal strength, generated in a gas composed of hard sphere molecules by two 
specularly reflecting pistons. The results may be compared with continuum 
theory and experimental results (Glass & Heuckroth 1959).f Also examined 
is the collision of a shock wave with a constant temperature wall. It appears 
from the abstract of Bird (1969) that a detailed study of the collision with an 
adiabatic wall will soon be available. Thus only a few results are presented here. 
As the shock structure was obtained in the course of these studies, these results 
are given and compared with those of Bird. 

‘ Experimental’ technique 
As the Bird analysis will be used in the subsequent study, this will be des- 

cribed first and the differences with the Denisik et al. model will then be pointed 
out. Rather than repeat the description given by Bird (1967) a slightly different 
viewpoint on the technique will be taken. In  addition, a modification is proposed 
and used in the present work. 

Consider the gasdynamic system under study to be made up of a series of 
comparatively small, but nevertheless macroscopic subsystems. These macro- 
scopic bodies “behave approximately like closed systems over not too great 
periods of time. In  fact, the particles which take part in the interaction of a sub- 
system with neighbouring parts of the system, are mainly those near its surface. 
Their number in comparison with the total number of particles in the subsystem 
quickly falls with an increase in size of the latter” (Landau & Lifshitz 1958, p. 6). 
Now generate a number of particles with random velocity components to re- 
present the interacting or information transferring particles. These are assigned 
to various parts of the system in a random fashion. Consider each particle to have 
two roles, one as a typical subsystem particle and the other as an information 
transferring particle. Only these of all the particles in the system can transfer 
information. The remainder collide between themselves and take up typical 
average subsystem conditions dictated by the information particles being studied. 
As the time considered is short, particles can only transfer information from one 
subsystem to  the next and usually the particles can only come from the right- 
hand half of one zone and the left-hand side of the next. I n  fact by choosing the 
time under consideration, AT,, such that the fastest particle in the zone will 
not travel more than 0.4-0.5 of a zone width in AT,, this can be assured. 

While in their role of transferring information, all the particles from each 
half of a subsystem may be considered to be at  the boundary so that any particle 
may collide with any other particle. Further, each subsystem is considered to be 
statistically independent of the next during time AT,. Consider the first zone 
interface and select a pair of molecules a t  random. These are retained or rejected 
proportionally to their relative velocity. Having chosen a pair, a collision vector 

t I am indebted to Dr Glass for suggesting this problem. 
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can be chosen at random as the colliding pair are assumed to be from any part 
of the field. The number of such collisions which can occur in time AT, in a 
given zone is calculated upon the probable time for each collision chosen. The 
incremental time AT for a given collision can reasonably be chosen to be in- 
versely proportional to the relative velocity of the pair, VRi, the collision cross 
section, A ,  the number of colliding pairs of information particles, Nc/2, and the 
local number density, N .  Therefore 

after k collisions, that is inversely proportional to the swept volume and number 
of particles. 

After this process has been repeated for each subsystem interface, the particles 
are allowed to take up their new positions and the cycle repeated. 

There arise two problems with equation (1). Suppose AT, = 2.0 and in one 
subsystem AT, = 1.3 and AT, = 1.1. If we only take AT, = AT, a deficit of 0.7 
in time exists, if AT, = AT, + AT2 an excess of 0.4 in time is allowed. One possible 
solution is to consider that k must always be larger than 5 ,  say, to keep the error 
relatively small. The second problem then arises where large density and tem- 
perature gradients exist in only part of the flow, such as through a shock wave. 
The value of a typical ATk may be 50 times smaller behind a strong shock than 
in front so that to  ensure that E = 5 in the pre-shock region, the post-shock 
k = 250. Thus during AT,, on the average, every particle in each downstream 
subsystem will have collided a t  least once. This is unrealistic and contravenes 
restrictions upon statistical independence. Alternatively the subsystem may 
be kept large in width which will increase the number of particles in pre-shock 
zones and hence decrease A q  there. Again, to maintain independence, large 
gradients of properties cannot be permitted in a closed subsystem. To keep 
gradients small the zone width must be fairly narrow with respect to the mean 
free path. 

The solution proposed here is to calculate the probability of any collision occur- 
ring during a time St. An estimate of the average collision time ATA for a given 
subsystem is formed from equation (1) by substituting twice? the average absolute 
value of the peculiar velocities of the subsystem, for V,. The average probability 
ofa  collision is taken to  be &/FA. Thus when a stage is reached with the nth time 
stJep AT, would make 

z AT, > AT, 
k 

i-1 

a random number R is chosen between 0 and 1.0 and if 

k - 1  

i= 1 
(AT,- z AT,/ATA 

t A multiplication factor of two was chosen rather than the equilibrium value of 4 2  
after running the program a number of times and examining the average collisional velocity 
through the shock. 
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the collision was assumed to  occur and AT,was taken to have elapsedexactly. If 

k- 1 

i = l  
AT,- C AT,lATi 

the collision was rejected and again AT, was assumed to have elapsed. This 
settles the first problem raised. It also provides a solution to the second. If the 
time AT, is adjusted for the dense regions, the rarefied upstream regions will 
all have AT, > ATm so the above selection principle can be invoked. It should be 
particularly important in defining the front foot of the shock as small errors from 
here may be transmitted downstream. In a problem with moving boundaries 
such as shock generation by a moving piston, the piston only transmits informa- 
tion about its motion while the particles are moving. Thus the sequence consists 
of an input of information from the piston and this is then transmitted to other 
parts of the system for a small time AT, before further input is generated. 

The technique by Denisik et uZ. (1967) has not been applied to problems with 
moving boundaries. It has been applied to situations undergoing chemical change. 
In this solution spatial correlation is neglected and only particle velocities and 
time are used as arguments. However, this does not appear to be a necessary 
restriction and the moving boundaries and zones could be used as before. A 
total interaction cross section for each particle with the other particles is calculated 
as 

where 
ith andjth particles. As aoij is constant for hard sphere molecules 

= velocity of the ith particle, aoij is the interaction cross-section of the 

The probability of no collisions occurring in a distance x is 

P(z) = exp(-z/h) = exp{ -nulv[t) = P(t), (4) 

where P(t) is the probability of a time of flight t before a collision occurs. 
Thus the time of flight of the ith particle before a collision is 

lnP(t)N 
(5) 

In ti N - -  - t .= - 
nflilKl nroijS l l$-~l’  

where (is a random number between 0 and 1-0. Now 2 1 T$- TI / N  may be considered 
as an average value of the collision velocity between the ith particle and all 
others in the system. When this is divided by ln& a value equivalent to Bird’s 
V’ is obtained. If ti is now calculated for all N particles and the minimum chosen, 
the first particle k to collide in time will be found. The collision of partner j to i 
is selected at random with probability 
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In  the original paper the lower limit on the summation i s j  = i. It is hard to see 
any reason for this as the particles are not ordered. Velocities are then calculated 
and the whole cycle repeated. If this is repeated $N times the time for a mean 
free path to be covered will be obtained. Thus in the Bird solution when only a 
random pair of particles is chosen the factor +N must be used. It is obvious 
that the two techniques should produce the same result with the latter not re- 
quiring the proposed alteration to the Bird method. However, the technique 
of Denisik et al. would require very much greater computation time as the 
collision cross-sections must be repeated for each collision and ti min found. 

Experimental details 
As pointed out by Vogenitz et al. (1968), if the time steps are normalized to 

the mean time between collisions in front of the shocks, the size of molecules need 
not be specified. However, it seemed worthwhile to use firm numbers to obtain 
readily an indication of actual dimensions and times although the actual selec- 
tion is unimportant. A molecular radius of 1 d and a number density of 0.4 x 1019 
or 0.15 atmospheres were chosen to study the shock collision problem. Mach 
numbers of 10.0 and 4.0 were used for shock strength. The reflexion from a cold 
wall again used a molecular radius of 1 d but a number density of 1-08 x 1019 
or 0.37 atmosphere. Shock strength was that of a Mach 10.0 wave. An initial 
temperature was not chosen and the particle velocities were normalized to  the 
most probable particle velocity Vm at 273 OK. To aid in interpreting the figures V, 
typically equals 1-5 x lo5 cm/s for H,, which has the required molecular radius. 
The number of particles used ranged from 3600 to 6000 and run time maximum 
was 1$ h on an IBM 360/65. The initial number of particles per zone was 60-70. 
This was chosen so that the number of collisions in ATm would only involve a 
small percentage of those in the zone. As stated before, the time between the 
movement of molecules, AT,, was usually chosen so that the fastest particle in 
the system would not move more than 0.4 of a zone in AT,. The initial zone width 
was 1.2 times the mean free path A, in the undisturbed gas. As AT, was related 
to the zone width it was found that zone widths less than 0-18 A, produced such 
a small number of collisions in ATm that the whole process would be controlled 
by the average probability of collision principle suggested above. It appears 
in retrospect that it would be better to raise the restriction of 0.4 of the zone width 
for the fastest particle to say 0.7 as very few particles would be involved. This 
would allow the minimum zone width to be reduced below 0.18 A,. 

The piston velocity was set as in Bird (1965) as 

v/v, = .J(2Y) [M2 - 1IKr + 1)M, 

where M is the desired Mach number. It was found necessary to start the M = 4.0 
piston before the M = 10.0 piston to arrange for both reflected shocks to move 
out of the region at  the same time. 

In deciding whether to retain or reject a pair of particles for collision the 
probability is set proportional to the relative velocity. This means that a maxi- 
mum possible relative velocity must be found to calculate an actual probability. 
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This was taken to be twice the maximum velocity of any particle in each zone. 
Finally it is worth mentioning that in setting up a Monte Carlo system for such 
large runs provision should be made to dump the relevant core after a given 
time so that restart may be effected later. 

120 

100 

80 

6o 

40 

20 

r - 
- 
- 
- 
- 
- 
- 

- 0 

- E  

-.2 

.- * 

x 

-a" 
- 
- 

O L  

Distance (mean free paths) 

FIGURE 1. Variation of density, pressure, temperature and velocity through a Mach number 
10 shock wave. Result shown for 2.27 after start of motion of generating piston. T = 0.5 x 
10-3/Vm see, h = 0-562 x em. .-m--, temperature ratio; .-@-, density ratio; 
-, pressure ratio; - - - , velocity. 

Results 
The mean free path was 0.562 x em and the mean time between collisions 

r ,  0.5 x 10-3/Vm see. Figure 1 shows the variation of density, pressure, temperature 
and velocity through a Mach 10.0 shock wave at  a time 2.2 r after the piston was 
impulsively set in motion. This graph has been produced by averaging 11 sets 
of results simulating approximately a total of 4 x lo4 molecules. The zone widths 
were approximately the same width in all cases. A thick mean line has been 
inserted to  assist in the discrimination between curves and to show general 
trends. This has not been statistically fitted as the possible statistical fluctua- 
tions in the results makes such an exercise meaningless. The number of collisions 
during AT,, in a typical dense region was 19 and the undisturbed region either 
0 or 1.  It can be seen that the pressure and density profiles commence decreasing 
a t  about the same point but the temperature front lies considerably further 
from the piston. This is due to a few high-speed molecules raising the mean peculiar 
velocity (Chapman & Cowling 1968) without changing the local number density. 
The maximum slope thickness Xof a quantityK isdefinedas ( K  - K,)/(dK/dX),,, 
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and the reciprocal shock thickness R, as hm/x. Using these definitions R, = 0.41, 
Rp = 0.32, R, = 0.83, and R, = 0-38 where subscripts p, p ,  T and V indicate 
density, pressure, temperature and velocity. In  Bird (1969) it was found that 
the shock density did not reach its Hugoniot value at the piston face until time 
27, which is substantiated by the present work. Also the values of R, agree well 
with the results of Bird (1969). 
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FIGTJRE 2. Standard deviation of results in figure 2 shown as 1 standard deviation above 
post-shock conditions. 7 = 0-5 x 10-’/Vm see, h = 0.562 X em. .---R--, tempera- 
ture ratio; .-*, density ratio; -, pressure ratio; - - , velocity. 

The slope of the temperature profile is much greater at the leading edge of the 
shock than at the top. This may be a peculiarity of the present set of results al- 
though it could be a result of the modified time advance measure. A study of the 
longitudinal temperature profile (Bird 1967) gave a maximum temperature 
ratio of 43.0. This, as in Bird (1967), agreed well with the value of 42.1 predicted 
by Yen (1966). Finally, a sample of six results for number density 1.07 x 1019 
at time 7.4 T after the piston started moving gave shock thicknesses which agreed 
with the above. 

The standard deviation was calculated at  each point and the results are shown 
in figure 2 as one standard deviation above a line at  post shock conditions. If 
each point was statistically independent of the next, the standard deviation of 
the mean could be found. However, some correlation does exist and the errors 
are probably not as great as suggested here. Derzko (private communication) 
has shown that in the steady state regions the statistical fluctuations decrease 
inversely as the square root of the number of observations, when using this 
technique. 
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Two shock waves, one of Mach number 10-0 and the other of Mach number 4.0 
were generated in a hard sphere gas by two opposing pistons. Sufficient distance 
(between 60 and 100 zones of length 1-2h) was allowed between the pistons to  
ensure that both shocks were fully formed before collision. At a time 0.1127 
after first collision between the temperature profiles, the conditions are as 
shown in figure 3(a ) .  The figure is a composite of 11 results and as would be 
expected, the fluctuations are larger than previously. The only remnant of the 
precollision conditions is seen in the density profile. Pressure, temperature and 
velocity profiles show no trace and are smoothly curving. The average velocity 
of the zero velocity point, 4.8 x V,, is less than that of the final reflected wave 
velocity 5.7 x V,. 
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At a time 0.288 r after collision, the density profile has become almost smooth 
although the slope on the Mach 4.0 side is steeper than the Mach 10.0, as shown 
in figure 3(b ) .  These curves are the avera,ge of 13 sets of results. The pressure and 
velocity are still smoothly curving but the temperature has started to increase 
above the Mach 10.0 post shock value. The temperature is often the most 
sensitive parameter (see Bird 1967). The average velocity of the zero velocity 
point was 4.3 x V,, a decrease from the initial stage. 

Nine sets of results were used to  produce the curves for time 0.5487 after 
collision, shown in figure 3(c).  In  this case, temperature, pressure and density 
are all sharply peaked. However, there is no sign of a contact discontinuity 
developing or of the constant velocity region. The zero velocity point had an 
average velocity of 4-2 x V,. 

The first appearance of the contact discontinuity occurred at 0.576 r after 
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collision. This is shown in figure 3(d ) ,  which is the average of 7 results. The particle 
velocity was about 3.2 x V,  which compares favourably with the continuum result 
of 3.13 x V,. Neither the pressure, temperature, northedensityreached their maxi- 
mum values of 339,498 and 11-1 respectively. The discontinuity in density was 
not apparent at  this stage, either. Thus in this case the particle velocity was 
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FIGURE 3. Variation of density, pressure, temperature and velocity a t  various times are a 
Mach number 10 shock collided head on with a Mach number 4 shock. Vertical line is 
the point of collision. Initial number density 0.4 x lo1$. 7 = 0.5 x l 0 - ’ / i m  scc, h = 0.562 x 

om. m - E ,  temperature ratio; *.-, density ratio; ~ , pressure ratio; 
_-  , velocity. 
(a )  0.112 7 after collision; ( b )  0.288 7 after collision; ( c )  0.548 T after collison; ( d )  0.576 T 

after collision; ( e )  0.951 7 after collision. 
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the most sensitive indicator of the final state. The velocity of the zero velocity 
point was 4.7 x V,, thus increasing towards the final value. 

One result at  0-951 r after collision has been produced which required two hours 
computing. This could only be performed once due to restrictions upon maximum 
continuous running times at the University of Toronto. The results are shown 
in figure 3(e) and it can be seen that a distinct discontinuity exists in the density 
profile. The particle velocity has a long constant value region roughly equally 
spaced about the density discontinuity. The pressure has reached a plateau at 
339. However, there is no sign of a discontinuity in temperature. This could be 
expected as the reflected shocks have not developed sufficiently and a sharp 
discontinuity in temperature would not be normally found. The velocity of the 
zero velocity point when comparing the positions of the point at time 0.5677 
and 0.951 r for this result was 5.7 x V,, the exactly predicted value. 

It is clear that if sufficient computer time was available, and this would mean 
an additional 30 h, the motion of the reflected shocks could be followed and 
would produce Hugoniot values. 

The other problem which was considered very briefly was the collision of a 
Mach 10.0 shock wave with a cold wall. The cold wall was simulated by a diffuse 
reflective surface. This exercise was performed in a denser gas, number density 
1.07 x 1019. As Bird (1969) examines the adiabatic wall case, it  appeared interest- 
ing to find the rate of growth of the thermal boundary layer. The results for two 
stages, 0-53 r after collision, (figure 4(a) ) and 0.95 7 sec after collision (figure 4(b) ), 
are shown. The figures were produced from 5 and 6 sets of results respectively. 
In  figure 4(a) it can be seen that the boundary layer is only about 0.4hm wide 
in the temperature profile. By 0,957 this has grown to 1*0h,. The remaining 
parameters, pressure, velocity and density are not sufficiently sensitive to 
show the different effects of the boundary layer and the reflected shock. As would 
be expected, the stable downstream values were not attained. However, it  can 
be seen that the thermal boundary layer has been formed and it could be followed 
to later times if so desired. Again considerable computer time would be required. 

Concluding remarks 
The examination of shock structure which has been briefly examined here 

agrees well with the more extensive results by Bird (1969). The solution to the 
shock collision problem has demonstrated the power of this technique. In fact 
this problem probably could not be solved to this degree of accuracy by any 
other method presently available. It was found that the reflected waves were 
not formed in a recognizable fashion until about 0.8 7 after the collision. If the 
mean density ratio throughout this time is 7.5, this rcpresents about 6 mean 
collisional times. Although it would have been desirable to follow the reflexion 
process further to show the development of the thermal contact surface, the 
increase in computer time was not warranted. The experimental results by Gould 
(1952) suggest that the reflexion process is completed substantially by the stage 
obtained here, the remaining process would be simple diffusion between the 
two hot gases. 
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Thus until analytic techniques become less dependent upon complex numerical 
calculations, this Monte Carlo technique by Bird appears to provide one of the 
quickest methods of setting out to solve unsteady flow problems where changes 
occur over small regions relative to the mean free path. 
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